1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
use core::mem::replace;
use crate::algorithm::selection_functions::SelectionFunction;
use crate::node::{ParentNode, RTreeNode};
use crate::object::RTreeObject;
use crate::params::RTreeParams;
use crate::{Envelope, RTree};
use alloc::{vec, vec::Vec};
#[allow(unused_imports)] use num_traits::Float;
pub struct DrainIterator<'a, T, R, Params>
where
T: RTreeObject,
Params: RTreeParams,
R: SelectionFunction<T>,
{
node_stack: Vec<(ParentNode<T>, usize, usize)>,
removal_function: R,
rtree: &'a mut RTree<T, Params>,
original_size: usize,
}
impl<'a, T, R, Params> DrainIterator<'a, T, R, Params>
where
T: RTreeObject,
Params: RTreeParams,
R: SelectionFunction<T>,
{
pub(crate) fn new(rtree: &'a mut RTree<T, Params>, removal_function: R) -> Self {
let root = replace(
rtree.root_mut(),
ParentNode {
children: vec![],
envelope: Envelope::new_empty(),
},
);
let original_size = replace(rtree.size_mut(), 0);
let m = Params::MIN_SIZE;
let max_depth = (original_size as f32).log(m as f32).ceil() as usize;
let mut node_stack = Vec::with_capacity(max_depth);
node_stack.push((root, 0, 0));
DrainIterator {
node_stack,
original_size,
removal_function,
rtree,
}
}
fn pop_node(&mut self, increment_idx: bool) -> Option<(ParentNode<T>, usize)> {
debug_assert!(!self.node_stack.is_empty());
let (mut node, _, num_removed) = self.node_stack.pop().unwrap();
if num_removed > 0 {
node.envelope = crate::node::envelope_for_children(&node.children);
}
let (parent_node, parent_idx, parent_removed) = match self.node_stack.last_mut() {
Some(pn) => (&mut pn.0, &mut pn.1, &mut pn.2),
None => return Some((node, num_removed)),
};
*parent_removed += num_removed;
if node.children.is_empty() {
return None;
}
parent_node.children.push(RTreeNode::Parent(node));
if !increment_idx {
return None;
}
let parent_len = parent_node.children.len();
parent_node.children.swap(*parent_idx, parent_len - 1);
*parent_idx += 1;
None
}
}
impl<'a, T, R, Params> Iterator for DrainIterator<'a, T, R, Params>
where
T: RTreeObject,
Params: RTreeParams,
R: SelectionFunction<T>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
loop {
let (node, idx, remove_count) = match self.node_stack.last_mut() {
Some(node) => (&mut node.0, &mut node.1, &mut node.2),
None => return None,
};
if *idx > 0 || self.removal_function.should_unpack_parent(&node.envelope) {
while *idx < node.children.len() {
match &mut node.children[*idx] {
RTreeNode::Parent(_) => {
let child = match node.children.swap_remove(*idx) {
RTreeNode::Leaf(_) => unreachable!("DrainIterator bug!"),
RTreeNode::Parent(node) => node,
};
self.node_stack.push((child, 0, 0));
return self.next();
}
RTreeNode::Leaf(ref leaf) => {
if self.removal_function.should_unpack_leaf(leaf) {
*remove_count += 1;
return match node.children.swap_remove(*idx) {
RTreeNode::Leaf(data) => Some(data),
_ => unreachable!("RemovalIterator bug!"),
};
}
*idx += 1;
}
}
}
}
if let Some((new_root, total_removed)) = self.pop_node(true) {
*self.rtree.root_mut() = new_root;
*self.rtree.size_mut() = self.original_size - total_removed;
return None;
}
}
}
}
impl<'a, T, R, Params> Drop for DrainIterator<'a, T, R, Params>
where
T: RTreeObject,
Params: RTreeParams,
R: SelectionFunction<T>,
{
fn drop(&mut self) {
if self.node_stack.is_empty() {
return;
}
loop {
debug_assert!(!self.node_stack.is_empty());
if let Some((new_root, total_removed)) = self.pop_node(false) {
*self.rtree.root_mut() = new_root;
*self.rtree.size_mut() = self.original_size - total_removed;
break;
}
}
}
}
#[cfg(test)]
mod test {
use std::mem::forget;
use crate::algorithm::selection_functions::{SelectAllFunc, SelectInEnvelopeFuncIntersecting};
use crate::point::PointExt;
use crate::primitives::Line;
use crate::test_utilities::{create_random_points, create_random_rectangles, SEED_1, SEED_2};
use crate::{RTree, AABB};
use super::*;
#[test]
fn test_remove_and_insert() {
const SIZE: usize = 1000;
let points = create_random_points(SIZE, SEED_1);
let later_insertions = create_random_points(SIZE, SEED_2);
let mut tree = RTree::bulk_load(points.clone());
for (point_to_remove, point_to_add) in points.iter().zip(later_insertions.iter()) {
assert!(tree.remove_at_point(point_to_remove).is_some());
tree.insert(*point_to_add);
}
assert_eq!(tree.size(), SIZE);
assert!(points.iter().all(|p| !tree.contains(p)));
assert!(later_insertions.iter().all(|p| tree.contains(p)));
for point in &later_insertions {
assert!(tree.remove_at_point(point).is_some());
}
assert_eq!(tree.size(), 0);
}
#[test]
fn test_remove_and_insert_rectangles() {
const SIZE: usize = 1000;
let initial_rectangles = create_random_rectangles(SIZE, SEED_1);
let new_rectangles = create_random_rectangles(SIZE, SEED_2);
let mut tree = RTree::bulk_load(initial_rectangles.clone());
for (rectangle_to_remove, rectangle_to_add) in
initial_rectangles.iter().zip(new_rectangles.iter())
{
assert!(tree.remove(rectangle_to_remove).is_some());
tree.insert(*rectangle_to_add);
}
assert_eq!(tree.size(), SIZE);
assert!(initial_rectangles.iter().all(|p| !tree.contains(p)));
assert!(new_rectangles.iter().all(|p| tree.contains(p)));
for rectangle in &new_rectangles {
assert!(tree.contains(rectangle));
}
for rectangle in &initial_rectangles {
assert!(!tree.contains(rectangle));
}
for rectangle in &new_rectangles {
assert!(tree.remove(rectangle).is_some());
}
assert_eq!(tree.size(), 0);
}
#[test]
fn test_remove_at_point() {
let points = create_random_points(1000, SEED_1);
let mut tree = RTree::bulk_load(points.clone());
for point in &points {
let size_before_removal = tree.size();
assert!(tree.remove_at_point(point).is_some());
assert!(tree.remove_at_point(&[1000.0, 1000.0]).is_none());
assert_eq!(size_before_removal - 1, tree.size());
}
}
#[test]
fn test_remove() {
let points = create_random_points(1000, SEED_1);
let offsets = create_random_points(1000, SEED_2);
let scaled = offsets.iter().map(|p| p.mul(0.05));
let edges: Vec<_> = points
.iter()
.zip(scaled)
.map(|(from, offset)| Line::new(*from, from.add(&offset)))
.collect();
let mut tree = RTree::bulk_load(edges.clone());
for edge in &edges {
let size_before_removal = tree.size();
assert!(tree.remove(edge).is_some());
assert!(tree.remove(edge).is_none());
assert_eq!(size_before_removal - 1, tree.size());
}
}
#[test]
fn test_drain_iterator() {
const SIZE: usize = 1000;
let points = create_random_points(SIZE, SEED_1);
let mut tree = RTree::bulk_load(points.clone());
let drain_count = DrainIterator::new(&mut tree, SelectAllFunc)
.take(250)
.count();
assert_eq!(drain_count, 250);
assert_eq!(tree.size(), 750);
let drain_count = DrainIterator::new(&mut tree, SelectAllFunc)
.take(250)
.count();
assert_eq!(drain_count, 250);
assert_eq!(tree.size(), 500);
forget(DrainIterator::new(&mut tree, SelectAllFunc));
assert_eq!(tree.size(), 0);
let points = create_random_points(1000, SEED_1);
points.clone().into_iter().for_each(|pt| tree.insert(pt));
let env = AABB::from_corners([-2., -0.6], [0.5, 0.85]);
let sel = SelectInEnvelopeFuncIntersecting::new(env);
let drain_count = DrainIterator::new(&mut tree, sel).take(80).count();
assert_eq!(drain_count, 80);
let sel = SelectInEnvelopeFuncIntersecting::new(env);
let drain_count = DrainIterator::new(&mut tree, sel).count();
assert_eq!(drain_count, 326);
let sel = SelectInEnvelopeFuncIntersecting::new(env);
let sel_count = tree.locate_with_selection_function(sel).count();
assert_eq!(sel_count, 0);
assert_eq!(tree.size(), 1000 - 80 - 326);
}
}