1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
use crate::{coordinate_position::CoordPos, dimensions::Dimensions};
/// Models a *Dimensionally Extended Nine-Intersection Model (DE-9IM)* matrix.
///
/// DE-9IM matrix values (such as "212FF1FF2") specify the topological relationship between
/// two [Geometries](struct.Geometry.html).
///
/// DE-9IM matrices are 3x3 matrices that represent the topological locations
/// that occur in a geometry (Interior, Boundary, Exterior).
///
/// The indices are provided by the enum cases
/// [CoordPos::Inside, CoordPos::OnBoundary, CoordPos::Outside](CoordPos).
///
/// The matrix entries represent the [Dimensions](enum.Dimension.html) of each intersection.
///
/// For a description of the DE-9IM and the spatial predicates derived from it,
/// see the following references:
/// - [OGC 99-049 OpenGIS Simple Features Specification for SQL](http://portal.opengeospatial.org/files/?artifact_id=829), Section 2.1.13
/// - [OGC 06-103r4 OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture](http://portal.opengeospatial.org/files/?artifact_id=25355), Section 6.1.15 (which provides some further details on certain predicate specifications).
/// - Wikipedia article on [DE-9IM](https://en.wikipedia.org/wiki/DE-9IM)
///
/// This implementation is heavily based on that from the [JTS project](https://github.com/locationtech/jts/blob/master/modules/core/src/main/java/org/locationtech/jts/geom/IntersectionMatrix.java).
#[derive(PartialEq, Eq, Clone)]
pub struct IntersectionMatrix(LocationArray<LocationArray<Dimensions>>);
/// Helper struct so we can index IntersectionMatrix by CoordPos
///
/// CoordPos enum members are ordered: OnBoundary, Inside, Outside
/// DE-9IM matrices are ordered: Inside, Boundary, Exterior
///
/// So we can't simply `CoordPos as usize` without losing the conventional ordering
/// of elements, which is useful for debug / interop.
#[derive(PartialEq, Eq, Clone, Copy)]
struct LocationArray<T>([T; 3]);
impl<T> LocationArray<T> {
fn iter(&self) -> impl Iterator<Item = &T> {
self.0.iter()
}
}
impl<T> std::ops::Index<CoordPos> for LocationArray<T> {
type Output = T;
fn index(&self, index: CoordPos) -> &Self::Output {
match index {
CoordPos::Inside => &self.0[0],
CoordPos::OnBoundary => &self.0[1],
CoordPos::Outside => &self.0[2],
}
}
}
impl<T> std::ops::IndexMut<CoordPos> for LocationArray<T> {
fn index_mut(&mut self, index: CoordPos) -> &mut Self::Output {
match index {
CoordPos::Inside => &mut self.0[0],
CoordPos::OnBoundary => &mut self.0[1],
CoordPos::Outside => &mut self.0[2],
}
}
}
#[derive(Debug)]
pub struct InvalidInputError {
message: String,
}
impl InvalidInputError {
fn new(message: String) -> Self {
Self { message }
}
}
impl std::error::Error for InvalidInputError {}
impl std::fmt::Display for InvalidInputError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "invalid input: {}", self.message)
}
}
impl std::fmt::Debug for IntersectionMatrix {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fn char_for_dim(dim: &Dimensions) -> &'static str {
match dim {
Dimensions::Empty => "F",
Dimensions::ZeroDimensional => "0",
Dimensions::OneDimensional => "1",
Dimensions::TwoDimensional => "2",
}
}
let text = self
.0
.iter()
.flat_map(|r| r.iter().map(char_for_dim))
.collect::<Vec<&str>>()
.join("");
write!(f, "IntersectionMatrix({})", &text)
}
}
impl IntersectionMatrix {
pub fn empty() -> Self {
IntersectionMatrix(LocationArray([LocationArray([Dimensions::Empty; 3]); 3]))
}
/// Set `dimensions` of the cell specified by the positions.
///
/// `position_a`: which position `dimensions` applies to within the first geometry
/// `position_b`: which position `dimensions` applies to within the second geometry
/// `dimensions`: the dimension of the incident
pub(crate) fn set(
&mut self,
position_a: CoordPos,
position_b: CoordPos,
dimensions: Dimensions,
) {
self.0[position_a][position_b] = dimensions;
}
/// Reports an incident of `dimensions`, which updates the IntersectionMatrix if it's greater
/// than what has been reported so far.
///
/// `position_a`: which position `minimum_dimensions` applies to within the first geometry
/// `position_b`: which position `minimum_dimensions` applies to within the second geometry
/// `minimum_dimensions`: the dimension of the incident
pub(crate) fn set_at_least(
&mut self,
position_a: CoordPos,
position_b: CoordPos,
minimum_dimensions: Dimensions,
) {
if self.0[position_a][position_b] < minimum_dimensions {
self.0[position_a][position_b] = minimum_dimensions;
}
}
/// If both geometries have `Some` position, then changes the specified element to at
/// least `minimum_dimensions`.
///
/// Else, if either is none, do nothing.
///
/// `position_a`: which position `minimum_dimensions` applies to within the first geometry, or
/// `None` if the dimension was not incident with the first geometry.
/// `position_b`: which position `minimum_dimensions` applies to within the second geometry, or
/// `None` if the dimension was not incident with the second geometry.
/// `minimum_dimensions`: the dimension of the incident
pub(crate) fn set_at_least_if_in_both(
&mut self,
position_a: Option<CoordPos>,
position_b: Option<CoordPos>,
minimum_dimensions: Dimensions,
) {
if let (Some(position_a), Some(position_b)) = (position_a, position_b) {
self.set_at_least(position_a, position_b, minimum_dimensions);
}
}
pub(crate) fn set_at_least_from_string(
&mut self,
dimensions: &str,
) -> Result<(), InvalidInputError> {
if dimensions.len() != 9 {
let message = format!("Expected dimensions length 9, found: {}", dimensions.len());
return Err(InvalidInputError::new(message));
}
let mut chars = dimensions.chars();
for a in &[CoordPos::Inside, CoordPos::OnBoundary, CoordPos::Outside] {
for b in &[CoordPos::Inside, CoordPos::OnBoundary, CoordPos::Outside] {
match chars.next().expect("already validated length is 9") {
'0' => self.0[*a][*b] = self.0[*a][*b].max(Dimensions::ZeroDimensional),
'1' => self.0[*a][*b] = self.0[*a][*b].max(Dimensions::OneDimensional),
'2' => self.0[*a][*b] = self.0[*a][*b].max(Dimensions::TwoDimensional),
'F' => {}
other => {
let message = format!("expected '0', '1', '2', or 'F'. Found: {}", other);
return Err(InvalidInputError::new(message));
}
}
}
}
Ok(())
}
/// Tests if this matrix matches `[FF*FF****]`.
///
/// returns `true` if the two geometries related by this matrix are disjoint
pub fn is_disjoint(&self) -> bool {
self.0[CoordPos::Inside][CoordPos::Inside] == Dimensions::Empty
&& self.0[CoordPos::Inside][CoordPos::OnBoundary] == Dimensions::Empty
&& self.0[CoordPos::OnBoundary][CoordPos::Inside] == Dimensions::Empty
&& self.0[CoordPos::OnBoundary][CoordPos::OnBoundary] == Dimensions::Empty
}
/// Tests if `is_disjoint` returns false.
///
/// returns `true` if the two geometries related by this matrix intersect.
pub fn is_intersects(&self) -> bool {
!self.is_disjoint()
}
/// Tests whether this matrix matches `[T*F**F***]`.
///
/// returns `true` if the first geometry is within the second.
pub fn is_within(&self) -> bool {
self.0[CoordPos::Inside][CoordPos::Inside] != Dimensions::Empty
&& self.0[CoordPos::Inside][CoordPos::Outside] == Dimensions::Empty
&& self.0[CoordPos::OnBoundary][CoordPos::Outside] == Dimensions::Empty
}
/// Tests whether this matrix matches `[T*****FF*]`.
///
/// returns `true` if the first geometry contains the second.
pub fn is_contains(&self) -> bool {
self.0[CoordPos::Inside][CoordPos::Inside] != Dimensions::Empty
&& self.0[CoordPos::Outside][CoordPos::Inside] == Dimensions::Empty
&& self.0[CoordPos::Outside][CoordPos::OnBoundary] == Dimensions::Empty
}
/// Directly accesses this matrix
///
/// ```
/// use geo_types::{LineString, Rect, line_string};
/// use geo::{coordinate_position::CoordPos, dimensions::Dimensions, relate::Relate};
///
/// let line_string: LineString = line_string![(x: 0.0, y: 0.0), (x: 10.0, y: 0.0), (x: 5.0, y: 5.0)];
/// let rect = Rect::new((0.0, 0.0), (5.0, 5.0));
///
/// let intersection = line_string.relate(&rect);
///
/// // The intersection of the two interiors is empty, because no part of the string is inside the rect
/// assert_eq!(intersection.get(CoordPos::Inside, CoordPos::Inside), Dimensions::Empty);
///
/// // The intersection of the line string's interior with the rect's boundary is one-dimensional, because part of the first line overlaps one of the rect's edges
/// assert_eq!(intersection.get(CoordPos::Inside, CoordPos::OnBoundary), Dimensions::OneDimensional);
///
/// // The intersection of the line string's interior with the rect's exterior is one-dimensional, because part of the string is outside the rect
/// assert_eq!(intersection.get(CoordPos::Inside, CoordPos::Outside), Dimensions::OneDimensional);
///
/// // The intersection of the line string's boundary with the rect's interior is empty, because neither of its end points are inside the rect
/// assert_eq!(intersection.get(CoordPos::OnBoundary, CoordPos::Inside), Dimensions::Empty);
///
/// // The intersection of the line string's boundary with the rect's boundary is zero-dimensional, because the string's start and end points are on the rect's edges
/// assert_eq!(intersection.get(CoordPos::OnBoundary, CoordPos::OnBoundary), Dimensions::ZeroDimensional);
///
/// // The intersection of the line string's boundary with the rect's exterior is empty, because neither of its end points are outside the rect
/// assert_eq!(intersection.get(CoordPos::OnBoundary, CoordPos::Outside), Dimensions::Empty);
///
/// // The intersection of the the line's exterior with the rect's interior is two-dimensional, because it's simply the rect's interior
/// assert_eq!(intersection.get(CoordPos::Outside, CoordPos::Inside), Dimensions::TwoDimensional);
///
/// // The intersection of the line's exterior with the rect's boundary is one-dimensional, because it's the rect's edges (minus where the string overlaps it)
/// assert_eq!(intersection.get(CoordPos::Outside, CoordPos::OnBoundary), Dimensions::OneDimensional);
///
/// // The intersection of the two exteriors is two-dimensional, because it's the whole plane around the two shapes
/// assert_eq!(intersection.get(CoordPos::Outside, CoordPos::Outside), Dimensions::TwoDimensional);
/// ```
pub fn get(&self, lhs: CoordPos, rhs: CoordPos) -> Dimensions {
self.0[lhs][rhs]
}
}
impl std::str::FromStr for IntersectionMatrix {
type Err = InvalidInputError;
fn from_str(str: &str) -> Result<Self, Self::Err> {
let mut im = IntersectionMatrix::empty();
im.set_at_least_from_string(str)?;
Ok(im)
}
}