1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
use num_traits::Zero;
use std::cmp::Ordering;
use crate::{coord, Coord, CoordNum};
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub enum Orientation {
CounterClockwise,
Clockwise,
Collinear,
}
impl Orientation {
#[inline]
pub(crate) fn as_ordering(&self) -> Ordering {
match self {
Orientation::CounterClockwise => Ordering::Less,
Orientation::Clockwise => Ordering::Greater,
Orientation::Collinear => Ordering::Equal,
}
}
}
pub trait Kernel<T: CoordNum> {
fn orient2d(p: Coord<T>, q: Coord<T>, r: Coord<T>) -> Orientation {
let res = (q.x - p.x) * (r.y - q.y) - (q.y - p.y) * (r.x - q.x);
if res > Zero::zero() {
Orientation::CounterClockwise
} else if res < Zero::zero() {
Orientation::Clockwise
} else {
Orientation::Collinear
}
}
fn square_euclidean_distance(p: Coord<T>, q: Coord<T>) -> T {
(p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y)
}
fn dot_product_sign(u: Coord<T>, v: Coord<T>) -> Orientation {
let zero = Coord::zero();
let vdash = coord! {
x: T::zero() - v.y,
y: v.x,
};
Self::orient2d(zero, u, vdash)
}
}
pub trait HasKernel: CoordNum {
type Ker: Kernel<Self>;
}
macro_rules! has_kernel {
($t:ident, $k:ident) => {
impl $crate::HasKernel for $t {
type Ker = $k;
}
};
}
pub mod robust;
pub use self::robust::RobustKernel;
has_kernel!(f64, RobustKernel);
has_kernel!(f32, RobustKernel);
pub mod simple;
pub use self::simple::SimpleKernel;
has_kernel!(i64, SimpleKernel);
has_kernel!(i32, SimpleKernel);
has_kernel!(i16, SimpleKernel);
has_kernel!(isize, SimpleKernel);
#[cfg(has_i128)]
has_kernel!(i128, SimpleKernel);